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Abstract

In this paper, we will survey a particular class of continuous-time stochastic control
problems which are time inconsistent. With time inconsistency, we will see that
the Bellman optimality principle – which is the standard idea used to deal with
stochastic control problems – will no longer be valid. Therefore, to solve a time-
inconsistent stochastic control problem, we have to consider a different approach.
One such approach that we will study is based on some of the concepts of game
theory. More precisely, we will be looking for Nash subgame perfect equilibrium
points for our problem. To determine such an equilibrium point (or strategy), we
will make use of an extended version of the standard Hamilton-Jacobi-Bellman
equation. In particular, we will use it to find an equilibrium strategy for a variant
of the traditional problem presented in the Modern Portfolio Theory – which we
will formulate in a continuous-time and dynamic setting. Finally, we will show
how to derive an equivalent time-consistent formulation to our time-inconsistent
problem.
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1 Introduction

One of the most important and enduring problems in finance relates to the con-
struction of a portfolio with a certain risk-return profile. This is a difficult task
not only because of the sheer number of securities that can be included in a port-
folio but also because the returns on those securities at any given time are random
variables. This, in turn, presents an additional difficulty as we will be required to
build models for the returns on those securities. However, even if the returns were
to be modelled accurately, the investor still faces the task of choosing the weights
of the securities in his/her portfolio to achieve the expected return he/she seeks
given the risk level that he/she is willing to undertake over a given investment
period.

Of course, the complexity of the problem has prompted several economists, finance
analysts and mathematicians to investigate the “ideal” way on how to construct a
portfolio. Indeed, the literature on the subject is very rich and broad with different
approaches being suggested. One such approach is the Modern Portfolio Theory
(MPT) which was proposed by the economist Harry Markowitz [1] in 1952 and for
which he was awarded the Nobel Prize. The MPT is definitely one of the most
famous theories in finance which, to a large extent, is due to its simplicity and
intuitive approach to building a portfolio.

In his work, Harry Markowitz assumed, quite reasonably, that investors are risk-
averse – which loosely speaking means that investors shy away from taking on
risk. Thus, given the same expected return, investors would prefer an asset which
is less risky over a more risky asset. Therefore, Markowitz proposes a methodol-
ogy whereby to build a portfolio, an investor should set an expected return that
he/she is aiming for and find the corresponding weights of the different securities
in his/her portfolio such that the risk undertaken is minimised.

Mathematically speaking, this is a constrained optimisation problem whereby we
are trying to find the weights of the different securities which result in the least
risk given a prescribed expected return level. It should also be clear that we have
one additional constraint which is that the weights of the securities should add up
to one. Equivalently, the investor could set the risk level he/she is prepared to
accept and then maximise the expected return on his/her portfolio.

While Markowitz’s Modern Portfolio Theory has revolutionised the way that we
think about portfolio construction, its limitations must, however, not be over-
looked. First and foremost, for the constrained optimisation problem to make
sense, we need to find a metric to measure how risky our portfolio is. In Markowitz
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view – and as is the general view in finance – risk is measured by the variance of
the returns of our portfolio. This, in itself, is a major assumption and its accurate
estimation using historical data can be fiercely debated; and thus raising questions
as to whether this methodology is reasonable. This is why different metrics, most
notably the Value-at-Risk, have been considered (Brachinger [1999] [2], Sentana
[2003] [3] and Byrne & Stephen Lee [2004][4] to mention a few). However, since
the choice of metric is not the focus of this paper, we will therefore assume that
the variance of the returns depicts accurately the risks in a portfolio.

One of the most important drawback, however, is that the constrained optimisa-
tion problem stated above is a static one. What this means is that our optimisation
is over a single time period [0, T ] and that the optimal weights found at time t = 0
will be used only once throughout the interval [0, T ]. It is clear that this is a major
drawback and is highly unrealistic in practice as investment managers/investors
actively manage their portfolio and do not simply choose the weights of the secu-
rities at time t = 0. Indeed, as time goes by, it is more realistic and advantageous
for investment managers to react to the additional information that they have
gathered rather than not doing anything at all.

One of the ways to address the above problem is to change the static Markowitz
formulation into a dynamic one. This was famously done in the discrete setting
by Hakansson [1971] [5] and Samuelson [1969] [6]. However, given that the present
technology allows for High-Frequency Trading, it seems more appropriate and re-
alistic to formulate our problem in continuous time rather than in discrete time
(see Merton [1969] [7] and Bajeux-Besnainou & Portait [1998] [8]). What this
means is that instead of solving only one constrained optimisation problem, we
will solve the problem “continuously” at every time t ∈ [0, T ] conditional on the
additional information that we have gathered up to that point in time. We will
then use the “optimal” weights that we have found to rebalance our portfolio at
every time t ∈ [0, T ]. This, of course, is very similar to the approach proposed by
Bajeux-Besnainou & Portait [1998] where continuous rebalancing was also allowed.

Naturally, when we formulate our problem in the continuous and dynamic setting,
the degree of risk-aversion of the investor will not be required to be static (as in
the MPT) and can change depending on factors such as the current wealth and
the remaining time in his/her investment period. In effect, this means that when
we formulate our problem, we will allow the investor’s preference/risk-appetite to
change over time.

Our aim will then be to find an optimal control law which, in our case, represents
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the proportion of our wealth that we should invest in the risky asset at any given
time and wealth level. However, it turns out that our optimisation problem suffers
from time inconsistency which means that the traditional concept of optimality
will no longer apply. Moreover, this will also mean that we will not be able to use
the standard Hamilton-Jacobi-Bellman (HJB) equation to solve our problem. So,
we will need an alternative angle to tackle our problem.

The alternative that we will consider is the game theoretic approach which has
been discussed in detail in the works of Ekeland & Lazrak [2006] [9] and Ekeland
& Privu [2007] [10]. In particular, to solve our problem, we will make heavy use
of the concept of equilibrium control and the extended HJB equation which was
introduced and defined rigorously in those papers. In short, our problem will be
viewed as a series of games whereby at every point in time, the player is allowed to
choose a control. The key to solving the problem will then be to, loosely speaking,
try to find the control law which will result in a subgame perfect Nash equilibrium.
The control found is what we will call an equilibrium control – which is what we
will attempt to solve for in this paper.

To achieve that, however, we will first need to study the Markowitz formulation,
discuss its limitation and develop an intuition on how to formulate a similar prob-
lem in continuous time and in a Black-Scholes economy. This will be done in
section 2 and 3. We will then move on to section 4 where we will discuss the issues
that our formulation faces – the main one being time inconsistency. In section 5,
the equilibrium controls for our problem will be derived. Finally, in section 6, we
will construct a time-consistent formulation for our time-inconsistent problem.

2 An overview of the Modern Portfolio Theory

Before presenting the ideas of the MPT, let us first state some of the assumptions
involved in the model. So, we will assume that the investor is risk-averse and has
an investment period of [0, T ], where T > 0. Moreover, suppose that we are in
a frictionless economy where there are n ∈ N>0 risky assets from which we can
build a portfolio. Let us denote the value of those risky assets at time t ∈ [0, T ] by
S1(t), · · · , Sn(t) respectively, which of course are non-negative random variables.
Then, we can define the single-period return on asset i ∈ {1, · · · , n} over [0, T ] as

Ri(T ) :=
Si(T )− Si(0)

Si(0)
.

To build a portfolio, we have to choose which assets to include and in what pro-
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portion to include them. In other words, we have to choose the weights of each of
the n risky assets in the portfolio. However, the caveat here is that we can choose
the weights in the portfolio only at time t = 0. So, suppose that we buy/short
∆i ∈ R of asset i ∈ {1, · · · , n} – assuming that the assets are perfectly divisible –
at time t = 0. Therefore, the value of our portfolio at any time t ∈ [0, T ], denoted
by X(t), is given by:

X(t) =
n∑
i=1

∆iSi(t).

Thus, the one-period return over [0, T ] on the portfolio is given by:

R(T ) :=

∑n
i=1 ∆iSi(T )−

∑n
i=1 ∆iSi(0)∑n

i=1 ∆iSi(0)

=

∑n
i=1 ∆i[Si(T )− Si(0)]∑n

i=1 ∆iSi(0)

=
n∑
i=1

[
∆iSi(0)∑n
j=1 ∆jSj(0)

]
Ri(T )

=
n∑
i=1

wiRi(T ).

Therefore, the one-period return on the portfolio over [0, T ] is actually the weighted
average of the single-period returns on each risky asset over [0, T ] with the weight

of asset i ∈ {1, · · · , n} being given by wi :=
∆iSi(0)∑n
j=1 ∆jSj(0)

. Moreover, notice that

we have
∑n

i=1wi = 1.

Now, suppose that E[Ri(T )] = µi ∈ R>0 and that Cov[Ri(T ), Rj(T )] = σij ∈
R, where i, j ∈ {1, · · · , n}. Therefore, if we define wT := (w1, · · · , wn), µT :=
(µ1, · · · , µn), Σi,j := σij and RT := (R1(T ), · · · , Rn(T )), then we can calculate the
expected value [11], denoted by µw, of the portfolio return at time T as follows:

µw = E[R(T )]

=
n∑
i=1

wiE[Ri(T )]

= wTµ.
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The variance [12], denoted by σ2
w, of the portfolio return at time T is given by:

σ2
w = Cov[R(T ), R(T )]

= Cov[wTR,wTR]

= wTCov[R,R]w

= wTΣw.

Having shown the preliminary results on how to find the expected value and vari-
ance of the portfolio return at time T for a certain weight vector w, the question
we face now is how to choose the weights in order to meet a given objective.

Before formulating the objective as proposed by Markowitz, it is necessary to
understand how to rank two portfolios with different weights in the Markowitz
mean-variance sense [13]. So, suppose we have two portfolios A and B with the
weights of assets at time t = 0 being w and w’ respectively. Then, we say that we
prefer portfolio A to B in the mean-variance sense if µw ≥ µw’ and σ2

w ≤ σ2
w’ with

at least one strict inequality.

As was mentioned above, the variance of the returns is a measure of the risk
associated with a portfolio. Therefore, what the above definition suggests is that
a risk-averse investor will always prefer a portfolio A over a portfolio B [14] if:

1. Portfolio A has an expected return at time T at least as high as portfolio B
given that it is also strictly less risky than portfolio B.

2. Portfolio A has a strictly higher expected return at time T than portfolio B
given that its risk is at most at the same level as portfolio B.

This order preference of portfolios above brings us to the definition of efficient
portfolios – which is what Markowitz aims to find. So, a portfolio A is said to be
efficient if there is no other portfolio B such that we prefer B to A in the mean-
variance sense as described above [15]. Using the definition of the order preference
of portfolios given above and that of efficient portfolios, it should be clear that
the objective of the MPT is then to find those portfolios that give the highest
expected return for a given risk level. Alternatively, from the definition, this is
also equivalent to finding those portfolios which are the least risky for a given level
of expected return.

Having found the efficient portfolios, we can then plot the highest expected return
attainable for each level of risk associated with a portfolio. This is more commonly
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known as the efficient frontier.

Of course, the above problem has been extended to include a risk-free asset in the
economy, but we will not go into further detail about these extensions in this paper.

So, mathematically, to find the weights of an efficient portfolio associated with an
expected return of r∗ ∈ R>0 at T , we need to solve the following problem [16]:

min
w∈Rn

Var[R(T )],

s.t. E[R(T )] = r∗ and
n∑
i=1

wi = 1.

Alternatively, to find the weights of an efficient portfolio associated with a pre-
scribed risk level (σ∗)2 ∈ R>0 at time T , we need to solve the following problem
[17]:

max
w∈Rn

E[R(T )],

s.t.Var[R(T )] = (σ∗)2 and
n∑
i=1

wi = 1.

While the above formulations both yield efficient portfolios, we will focus more on
another equivalent formulation [18] which will prove to be more useful when we
present our formulation of the continuous (and modified) version of the Markowitz
problem. This is given as follows:

max
w∈Rn

E[R(T )]− λVar[R(T )], (‡)

s.t.
n∑
i=1

wi = 1.

In the above formulation, λ is a positive real number (as investors are assumed
to be risk-averse) and is commonly referred to as the Arrow-Pratt risk aversion
index [19]. This is used as a measure of risk-aversion of an investor and intuitively
reflects the trade-off between risk and reward that an investor is willing to accept.
Indeed, the higher the Arrow-Pratt risk aversion index is, the more risk-averse the
investor is and vice-versa. This can be easily seen from (‡) above, as the higher
that λ is, the more will our objective function be penalised - as variance is always
non-negative.

Before moving on and using a variant of (‡) to formulate the dynamic and con-
tinuous version of our problem, we must first ensure that solving (‡) is indeed
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equivalent to the initial Markowitz constrained optimisation problem. This is
proved below.

Proof. Consider a fixed λ > 0 and suppose that by solving the constrained optimi-
sation problem (‡), we obtain the following optimal weightsw∗

λ = (w∗1,λ, · · · , w∗n,λ)T .

So, we have to show that there is no other portfolio with different weights such
that we prefer it to the one with weight vector w∗

λ.

First of all, notice that w∗
λ is admissible as the sum of the individual weight com-

ponents of w∗
λ is equal to one.

Now, suppose thatw = (w1, · · · , wn)T , where w1, · · · , wn ∈ R, such that
∑n

i=1wi =
1. Then, by the principle of optimality, we have:

E[Rw∗
λ
(T )]− λVar[Rw∗

λ
(T )] ≥ E[Rw(T )]− λVar[Rw(T )]

=⇒ E[Rw∗
λ
(T )]− E[Rw(T )] ≥ λ{Var[Rw∗

λ
(T )]− Var[Rw(T )]}

=⇒ µw∗
λ
− µw ≥ λ{σ2

w∗
λ
− σ2

w} (†)

We will now prove our claim by contradiction. So suppose that we prefer the port-
folio with weight vector w over one with weights given by w∗

λ in the mean-variance
sense. Therefore, we must have µw∗

λ
≤ µw and σ2

w ≤ σ2
w∗
λ

with at least one strict
inequality.

Suppose in the first instance that µw∗
λ
≤ µw and σ2

w < σ2
w∗
λ
. So, from (†) above,

µw∗
λ
− µw ≥ λ{σ2

w∗
λ
− σ2

w} > 0. So, µw∗
λ
− µw > 0 ⇐⇒ µw∗

λ
> µw – which is a

contradiction.

On the other hand, suppose that µw∗
λ
< µw and σ2

w ≤ σ2
w∗
λ
. Then, using (†) again,

we have λ{σ2
w∗
λ
− σ2

w} ≤ µw∗
λ
− µw < 0. Since, λ > 0, we have σ2

w∗
λ
< σ2

w. This of
course is a contradiction.

In the case where µw∗
λ
< µw and σ2

w < σ2
w∗
λ

holds, the contradiction is obvious.

Therefore, we must have that the portfolio with weights w∗
λ at time t = 0 must

indeed form an efficient portfolio.

So, by solving the formulation (‡), we know that we will get an efficient portfolio
provided that it exists for a given λ > 0. Notice that different values of λ will
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correspond to expected returns and variances of different efficient portfolios [20].

It must be noted that the formulation (‡) can be thought to be a slight simpli-
fication of two formulations initially presented as we have one less constraint to
deal with – the preset expected returns at time T in the first case and the preset
variance at time T in the second case. This type of formulation, although equiva-
lent to the first two formulations, is therefore easier to construct and to deal with.
In fact, when moving to the continuous and dynamic setting, we will also benefit
from this advantage; which is why we will make use of a formulation akin to (‡)
when presenting our problem.

3 Log return Mean-Variance Portfolio Theory

As we have seen above, the traditional MPT problem is a single-period one. As
such, we are solving a single optimisation problem at time t = 0 and use the cor-
responding optimal weights to build our portfolio at time t = 0. Then, from t = 0
onwards till t = T , the portfolio will be left undisturbed. Clearly, this is highly
unrealistic in practice, as portfolio managers constantly rebalance their portfolios
to try to meet their specific objectives.

So, it is clear that we need to move in a dynamic setting to better represent real-
ity. Moreover, we will assume that we are in a continuous time setting. Of course,
this is not exactly accurate; but then again, it is not entirely unrealistic given the
popularity of High-Frequency Trading in the financial industry. So, operating in
continuous time and in a dynamic setting gives us the possibility to adjust the
weights of the assets in our portfolio at any moment in time. Obviously, our aim
will then be to adjust those weights optimally given what we know now and have
already seen in the past. This is the motivation for our problem. However, before
delving further into it, we will first state our assumptions.

We will assume a frictionless and complete market similar to the Black-Scholes
setting (including the filtration) whereby there are only two assets: a stock which
is risky and a bond which is risk-free. Furthermore, we assume that the risk-free
rate is given by r ∈ R>0 and that the dynamics of assets are given by:

dSt = µStdt+ σStdWt and dBt = rBtdt.

In the above, St and Bt represent the prices of the stock and of the bond at time
t respectively; while Wt represents a Wiener process. Also, we have µ, σ ∈ R>0.
Since the stock is a risky asset, we expect µ to be greater than r. We will therefore
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assume this to be true in this paper.

We will now move on to construct a self-financing portfolio out of those two assets.
So, suppose that at any time t over a period [0, T ], our wealth/portfolio is valued
at Y (t) ∈ R and that we hold ∆(t) ∈ R stocks. Then,

Y (t) = ∆(t)St +

(
Y (t)−∆(t)St

Bt

)
Bt

=⇒ dY (t) = ∆(t)dSt +

(
Y (t)−∆(t)St

Bt

)
dBt

=⇒ dY (t) = ∆(t)[µStdt+ σStdWt] + r[Y (t)−∆(t)St]dt

=⇒ dY (t) = [rY (t) + (µ− r)∆(t)St]dt+ [σ∆(t)St]dWt. (1)

Now, in the traditional Markowitz formulation, the return used is a discrete-period
one. Moreover, the return is not annualised which means that it does not take into
account the length of the investment horizon. To remediate this issue and given
that we are operating in continuous time, it makes sense and is actually advan-
tageous for us to instead use the annualised log-returns when defining our problem.

Thus, let us define by R(t) the annualised log-return on our portfolio over the
interval [t, T ]. Thus,

R(t) =
1

T − t
log

[
Y (T )

Y (t)

]
=

1

T − t
[X(T )−X(t)] .

Notice that given our definition of the annualised log-return R(t), the latter will
only make sense if and only if our wealth process is always positive. Thus, if we
are to use R(t) in our model, we are implicitly implying that our wealth can never
be negative. However, since Y (t) is governed by the SDE given by (1) above, there
is no reason why it should always be positive for any ∆(t). Therefore, to explicitly
ensure that our wealth process is always positive, we will assume that at every
point in time, the value of stocks we hold in our portfolio is proportional to our
current wealth. To that end, we will denote by ut the proportion of wealth that
we hold in stocks at time t.

On a more intuitive level, the proportionality assumption is explained by the fact
that should the wealth of a risk-averse investor ever reach zero, then to avoid the
possibility of it going negative, it makes sense for him/her not to hold any risky
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asset. Therefore, by holding stock value proportional to our wealth, if the latter
reaches zero, then we will not have any position in the risky asset. In fact, as
we will show below, this assumption will actually ensure that our wealth always
remains positive provided that the investor starts with a positive wealth.

So, let us assume that at any time t ∈ [0, T ] that the value of stocks that we hold
is proportional to our wealth i.e. ∆(t)St = utY (t), where (ut)0≤t≤T is a real-valued
process. Then from (1) above, we get:

dY (t) = [rY (t) + (µ− r)∆(t)St]dt+ [σ∆(t)St]dWt

=⇒ dY (t) = [rY (t) + (µ− r)utY (t)]dt+ [σutY (t)]dWt

=⇒ dY (t) = Y (t) {[r + (µ− r)ut]dt+ [σut]dWt} .

The solution to the above SDE is given by the Doléans-Dade exponential [21].
Therefore, our wealth at time T starting at time t ∈ [0, T ] is given by:

Y (T ) = Y (t) exp

{∫ T

t

r + (µ− r)us −
σ2u2s

2
ds+

∫ T

t

σus dWs

}
.

Notice therefore that if we assume that ∆(t)St = utY (t), then if we start off with
a positive initial wealth i.e. Y (0) > 0, then our wealth process will always be
positive – which is what we wanted. This implies that X(t) := log[Y (t)] is a well
defined process and can be calculated to be:

log[Y (T )] = log[Y (t)] +

∫ T

t

r + (µ− r)us −
σ2u2s

2
ds+

∫ T

t

σus dWs

=⇒ X(T ) = X(t) +

∫ T

t

r + (µ− r)us −
σ2u2s

2
ds+

∫ T

t

σus dWs

=⇒ dX(t) =

[
r + (µ− r)ut −

σ2ut
2

]
dt+ [σut] dWt.

Notice that we have assumed that (ut)0≤t≤T is a regular enough process for the
above derivations to hold. As we shall see in the next section, we will assume that
ut = u(t,X(t)), where u : [0, T ] × R → R is a deterministic function. For the
time being, however, it is only necessary to note that ut will serve as our control
at time t and more generally, we will assume that the control process lives in a
suitable space U and takes values in the restricted subset U ⊆ R.
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So, from the above, we have that X(t) is given by:

X(T ) = X(t) +

∫ T

t

r + (µ− r)us −
σ2u2s

2
ds+

∫ T

t

σus dWs .

Therefore, if we suppose that ut is a deterministic function of time only i.e. ut =
u(t), then the distribution of X(T ) given X(t) = x ∈ R is given by:

X(T ) |X(t)=x ∼ N
(
x+

∫ T

t

r + (µ− r)u(s)− σ2u2(s)

2
ds,

∫ T

t

σ2u2(s) ds

)
Having ensured that R(t) is now well defined over [0, T ], let us now return back
to our objective. In a similar fashion to the discrete case, we wish to minimise the
variance of the annualised log-return on our portfolio given a prescribed level of
expected return. This is of course equivalent to maximising the expected return
on our portfolio given a certain risk level because of the ranking methodology of
portfolios that we discussed before.

Notice that since we are now operating in continuous time, our risk-preference
can also change as time goes by. Therefore, instead of using only a constant and
positive risk aversion index λ as in the Markowitz formulation, we can now use a
positive function λ(t, x) to reflect our changing risk-preference. Note that while
the risk aversion index depends on a number of factors in reality, we will assume
in this paper that it depends on where we are in our investment horizon [0, T ] and
our current log-wealth.

Our problem is thus to find the control law which solves the following optimisation
problem:

max
u∈U

Et,x[RT ]− λ(t, x)Vart,x[R(T )],

s.t. dX(t) =
[
r + (µ− r)ut − σ2u2t

2

]
dt+ [σut] dWt.

We will now simplify our objective function above and represent it in standard
formulation – which will be useful when we present the extended HJB equation in
the next section.

So, Et,x[R(T )] = 1
T−t{Et,x[X(T )] − Et,x[X(t)]} = 1

T−t{Et,x[X(T )] − x}, by simple
linearity.

Also, Vart,x[R(T )] = Vart,x
{

1
T−t [X(T )−X(t)]

}
= 1

(T−t)2
{
Et,x[X2(T )]− (Et,x[X(T )])2

}
.
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Therefore, our objective function which we will henceforth denote by J(t, x,u),
where (t, x) is our starting point and u is a control law, is given by:

J(t, x,u) =
1

T − t
{Et,x[X(T )]− x} − λ(t, x)

(T − t)2
{
Et,x[X2(T )]− (Et,x[X(T )])2

}
.

Our aim is therefore to find maxu J(t, x,u) for every (t, x) ∈ [0, T ] × R given our
SDE of X(t) above. This, of course, is mathematically equivalent to solving the
problem given below:

max
u∈U

Et,x[(T − t)X(T )− λ(t, x)X2(T )] + λ(t, x) (Et,x[X(T )])2 , (†)

s.t. dX(t) =
[
r + (µ− r)ut − σ2u2t

2

]
dt+ [σut] dWt.

Presented in the above form, it is clear the above closely resembles a standard
stochastic control problem. However, unlike the standard stochastic control prob-
lem, in this case, we cannot make use of the standard HJB equation to derive an
optimal control law. This is because the problem outlined above turns out to be
time inconsistent. This, in turn, makes the concept of optimality very problematic
and thus requires a different approach to solve as we will see in the next section.

4 Stochastic Control and Time Inconsistency

In the standard stochastic optimal control problem [22], we are faced with problems
of the following form:

max
u∈U

Et,x
[∫ T

t

C(s,Xu
s , us)ds+ F (Xu

T )

]
, (?)

where ut is the control process and Xu
t is a controlled Markov process taking real

values which is governed by the following SDE:

dXu
t = µ(t,Xu

t , ut)dt+ σ(t,Xu
t , ut)dWt; Xt = x. (??)

In the above, µ(t,Xu
t , ut) and σ(t,Xu

t , ut) are both real-valued functions and Wt is
a Wiener process. Moreover, from (?), the function C(t,Xu

t , ut) is often called the
running reward/penalty and in the standard formulation of a stochastic control
problem, this is allowed to depend on the time t, the controlled process at time
t i.e. Xu

t and the control itself at time t i.e. ut. Notice, however, that the be-
quest/terminal reward represented by the function F (.) is only allowed to depend
on the terminal value of the controlled process i.e. Xu

T .
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As far as the controls are concerned, we will be using only admissible feedback
control laws [23]. By feedback control (or Markovian control), we mean that the
control at time t, where Xu

t = x, is given by u(t, x), with u(., .) being a deter-
ministic real-valued function. By admissible, we mean that u(t, x) ∈ U for every
(t, x) ∈ [0, T ]×R and that the SDE (??) corresponding to the control law u(t,Xt)
admits a unique strong solution for every starting point (s, y) ∈ [0, T ]×R. The use
of feedback controls is an important assumption not only in the standard formu-
lation of the stochastic control problem but also in a more general setting, which
we will present later in this section, as it helps our model to maintain a Marko-
vian structure [24]. Without this crucial assumption, all the results presented in
this paper would be invalidated. In fact, getting any useful results at all without
this assumption becomes incredibly hard (see Björk [2010] [25] for more detail).
Therefore, in this paper, we will consider only admissible feedback control laws.

Now, in the standard stochastic problem problem, our aim is to solve (?) for every
starting point t and every initial value x of the controlled process Xu

t . Intuitively,
it would seem reasonable for us to expect that the optimal control law would
be different for every starting point and initial wealth (t, x). However, it turns
out that problems of this form have the time consistency property. What this
means is that no matter where we start and what our initial wealth is, the optimal
control law stays the same. So, the optimal law on [0, T ] will still remain optimal
when restricted to any other interval [t, T ], where t < T [26]. Mathematically, if
we denote the optimal control at (s,Xs) when starting at (t1, x1) by u∗t1,x1(s,Xs)
and the optimal control at (s,Xs) when starting at (t2, x2) by u∗t2,x2(s,Xs), where
0 ≤ t1 ≤ t2 ≤ s ≤ T , then we say that the standard problem has the time
consistency property[27] if:

u∗t1,x1(s,Xs) = u∗t2,x2(s,Xs), t2 ≤ s ≤ T.

Notice that this means that we only need to solve the problem at time t = 0 to
get the optimal control law over any other sub-interval [t, T ], t ≤ T .

The time consistency property as described above is a direct consequence of the
Bellman optimality equation [28], which in this case can be summarised as follows:

H(t, x) = sup
u∈U

Et,x
[∫ τ

t

C(s,Xu
s , us)ds+H(τ,Xu

τ )

]
,

where the above holds for all (t, x) ∈ [0, T ] × R and all stopping times τ ≤ T ,

and where we have Hu(t, x) = Et,x
[∫ T

t
C(s,Xu

s , us)ds+ F (Xu
T )
]

and H(t, x) =

supuH
u(t, x).
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Thus, the optimal control law starting at (t, x) coincides with the same optimal
control law starting from (τ,Xτ ) for every stopping time τ – in other words, we
have time consistency.

To be able to derive the Bellman optimality equation above and have time consis-
tency, we need our problem to be in the standard form. The main reasons as to
why the standard problem has the time consistency [29] property are as follows:

1. The running reward/penalty C(s,Xu
s , us) is not allowed to depend on our

starting time t and our initial wealth x.

2. The bequest/terminal reward is not allowed to depend on (t, x).

3. Most importantly, however, the terminal reward is of the form Et,x[F (Xu
T )].

Then, the Bellman optimality equation can then be derived from the tower
property. In particular, we are not allowed to have a term in the form
G (Et,x[Xu

T ]), where G(.) is a non-linear function. This is because we cannot,
in general, apply the tower property for any non-linear function G(.) and any
random variable Xu

T . More precisely, Eτ,Xu
τ
[G (Et,x[Xu

T ])] 6= G
(
Eτ,Xu

τ
[Xu

T ]
)

in
general.

Notice that for our problem (†) presented in section 3, we can define Hu(t, x) :=
Et,x[(T−t)X(T )−λ(t, x)X2(T )]+λ(t, x) (Et,x[X(T )])2. We can see that our termi-
nal reward/penalty is a function of (t, x). Moreover, we have a non-linear function
G(t, x, y) = λ(t, x)y2 acting on Et,x[X(T )]. Therefore, given the reasons presented
above, our formulation will not exhibit time consistency – we call such a problem
a time inconsistent one.

Clearly, time inconsistency is a serious problem because even if we were to solve
the problem starting at (t, x) and obtain some optimal control law, then when
we move along in time – to say t + ∆t and with new wealth x + ∆x – then the
“optimal” control law that we have previously obtained will no longer be optimal.
In other words, once we move from (t, x) to (t + ∆t, x + ∆x), then it is possible
for us to improve our functional given the information that we have gathered on
[t, t + ∆t] if we choose a control law different from the “optimal” one that we
calculated at (t, x). Therefore, it is clear that very concept of optimality becomes
quite problematic and therefore, to solve the problem, we need to try a different
approach.

One such approach, known as pre-commitment [30], is where we solve the optimi-
sation problem at (t, x) and use the control law we obtain on [t, T ] despite knowing
that the control law obtained will no longer be optimal in the future.
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Another interesting methodology, and one that we will consider in this paper,
is known as the game-theoretic approach – which we will introduce in the next
subsection.

4.1 Equilibrium control and the extended HJB equation

To get an idea of how to think about the game-theoretic approach and the equilib-
rium control, we will first discuss it in the discrete setting [31]. Thereafter, we will
use the same ideas to generalise the approach in continuous time. Before we move
on, however, we will henceforth denote the control laws in bold (like u) whereas
the possible values they take will not be denoted in bold (e.g: un = un(tn, x) ).

So, suppose we are facing a time inconsistent optimisation problem where we want
to maximise a given functional Jt0(x,u) over a discrete time period 0 = t0 < · · · <
tn = T , where n ≥ 1. Moreover, we will assume that our functional is of the form:

Ji(x,u) = Eti,x

[
n−1∑
k=i

C(x,Xu
k ,uk(X

u
k )) + F (x,Xu

T )

]
+G (x,En,x[Xu

T ]) .

Unlike in a time consistent problem where we can simply find the optimal control
at time t0 to solve the entire problem; in a time inconsistent problem, if a control
law û is optimal starting at (tk, x), then it will no longer be optimal from (tj, Xj)
onwards, for j > k. An informal way to think of it is that our preferences are
changing over time [32].

So, instead we will make use of the game-theoretic approach. First, remember
that at every point in time t0, · · · , tn−1, we can only choose one control utk which
will be of the form u(tk, Xtk), k = 0, · · · , n − 1. The idea then behind the game-
theoretic approach is to view the above problem as consisting of n games whereby
game k, where 0 ≤ k ≤ n− 1, is played at time tk and where we can choose only
our control which will be in the form of utk as described above [33].

Since we know that our preferences are changing in the future, our choice of the
control utk at time tk should reflect that fact. In other words, we will choose our
control at time tk by taking into consideration our future changing preferences
when we play the games at times tk+1, . . . , tn−1. We then proceed backwards in
time, starting at time tn−1, and solve the standard (and static) optimisation prob-
lem of maximising our objective function Jn−1(x,u) for every starting point x ∈ R.
We will denote the control law we obtain as ûtn−1

. This represents the first equi-
librium control.
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Then at time tn−2, we will solve the optimisation problem suputn−2
Jn−2(x,u) –

where we can only choose utn−2 – for every starting point x ∈ R given that once
we reach tn−1, we will use the control law ûtn−1

. The control law we obtain as a
result, denoted by ûtn−2

, represents the equilibrium control law at time tn−2.

Therefore, proceeding inductively backwards in time [34], we will get n equilibrium
control laws namely ût0 , · · · , ûtn−1

which we will use at time t0, · · · , tn−1 respec-
tively. Glueing those individual control laws together, we thus get our equilibrium
strategy.

We will now present the above ideas more formally with the following definition
from Björk & Murgoci [2010] [35]:

Definition 4.1. Let us consider a fixed admissible control law û and do the fol-
lowing construction:

1. Fix an arbitrary point (tk, x) where k < n, and choose an arbitrary control
value u ∈ U .

2. Now define a control law ū on the time set tk, · · · , tn−1 by setting for any
y ∈ R, ūti(y) = ûti(y) for i = k + 1, · · · , n− 1 and ūtk(y) = u.

We say that û is a subgame perfect Nash equilibrium strategy if, for every fixed
(tk, x), the following condition holds:

sup
u
Jn(x, ū) = Jn(x, û).

If an equilibrium control û exists, we then define the equilibrium value function as:

Vn(x) = Jn(x, û).

Remark:

1. Ideally, a player starting at (tk, x) would have liked to maximise Jk(x,u)
over all possible feedback control laws u [36]. However, in our setting the
player at time tk cannot do so as he is only allowed to choose his control at
time tk i.e. he is only allowed to choose uk [37]. This is a very important
assumption because without it, the problem becomes considerably harder to
solve [38].

2. Moreover, for the game-theoretic approach as presented above to make sense,
it is important that at tk, the player playing game k should only be able to
choose his action at that point! Had he/she been able to choose the control
at, say, tk+1, then we would have two players, namely player k and k + 1,
who would be playing the game at tk+1.
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3. The Markovian structure of our model above is guaranteed by the use of
feedback control laws. Had this assumption not been made, the problem
would have been considerably harder to solve and the results presented in
this paper would have been invalidated [51].

We will now move on to the continuous time setting where again we will have
different subgames being played. The functional that we wish to maximise this
time will be of the form:

J(t, x,u) = Et,x[F (t, x,Xu
T ] +G(t, x,Et,x[Xu

T ]).

In continuous time, we will be playing infinitely many games on [0, T ]. So, at time
t ∈ [0, T ], player t will play a game where he/she can only choose a control ut.
Similar to the discrete time case, we will still look for a subgame perfect Nash
equilibrium point [38]. Intuitively and informally, one can think that û is the
equilibrium control law if it is optimal for player t to use û given that all players
on (t, T ] will use û [39].

Notice that in the continuous case, it is slightly more difficult to formalise this
intuitive notion of equilibrium control as compared to the discrete setting. This
is because player t can only choose the control ut at time t and is therefore acting
on a time set of Lebesgue measure zero [40]. This means that his/her actions will
not have any bearing on the dynamics of the controlled process. Thus, we will
need another definition for an equilibrium control law, which was provided given
by Ekeland, Lazrak and Privu [41] [42], which is as follows:

Definition 4.2. Consider an admissible control law û. Then, choose an arbitrary
admissible control law u and a fixed real number h > 0. Also, we fix an arbitrar-
ily chosen initial point (t, x). Then, for y ∈ R, we define a control law uh by
uh(s, y) := u(s, y) for t ≤ s < t+ h and uh(s, y) := û(s, y) for t+ h ≤ s ≤ T .

Then, if we have:

lim inf
h→0

J(t, x, û)− J(t, x,uh)

h
≥ 0,

for all admissible control law u, we say that û is an equilibrium control law. More-
over, the equilibrium value function is defined by:

V (t, x) = J(t, x, û).

Having defined and explained the concept of equilibrium control, we now face the
problem of finding it. To do so, we will make use of the extended HJB equation
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[52] – which we will introduce shortly. First, recall that we want to maximise a
functional of the form:

J(t, x,u) = Et,x[F (t, x,Xu
T ] +G(t, x,Et,x[Xu

T ]),

where to ensure that we have a non-degenerate problem [52] , we will assume that
Et,x[|F (t, x,Xu

T |] < ∞ and Et,x[|Xu
T |] < ∞ for each (t, x) ∈ [0, T ] × R and admis-

sible control law u.

Clearly, a functional of the above form is a simplification in the sense that we do
not have a running reward/penalty. However, as we have seen previously in section
3, our problem formulation does not have a running reward/penalty. Therefore,
the simplification presented above is enough to solve our problem. With this, let
us define the extended HJB equation [44] where in the definition below, Auh de-
notes the infinitesimal generator of the function h. Note that unlike the general
definition of the infinitesimal generator, ours will include the term ∂h

∂t
(t, x) .

Definition 4.3. [45] The extended HJB system of equations for V, f and g is
defined as follows:

1. For 0 ≤ t ≤ T , the function V is determined by:

sup
u∈U

{
(AuV )(t, x)− (Auf)(t, x, t, x) + (Auf tx)(t, x)−Au(G ◦ g)(t, x) + (Hug)(t, x)

}
= 0.

with boundary condition being given by:

V (T, x) = F (T, x, x) +G(T, x, x).

2. For every fixed s ∈ [0, T ] and y ∈ R, the function (t, x)→ f sy(t, x) is defined
by:

Aûf sy(t, x) = 0, 0 ≤ t ≤ T. (4.1)

f sy(t, x) = F (s, y, x).

3. The function g(t, x) is defined by:

Aûg(t, x) = 0, 0 ≤ t ≤ T. (4.2)

g(T, x) = x.
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In the above definition, we have used the following notation:

f(t, x, s, y) = f sy(t, x).

(G ◦ g)(t, x) = G(t, x, g(t, x)).

Hug(t, x) = Gy(t, x, g(t, x))×Aug(t, x).

Gy(x, y) =
∂G

∂y
(t, x, y).

Moreover, û represents the control law which achieves the supremum in the first
equation of the extended HJB system. Also, we have a probabilistic interpretation
[53] for the functions f and g in the sense that they are both expectations given
by:

f sy(t, x) = Et,x[F (s, y,X û
T )], 0 ≤ t ≤ T. (4.3)

g(t, x) = Et,x[X û
T ], 0 ≤ t ≤ T. (4.4)

This probabilistic interpretation will be very useful when actually using the ex-
tended HJB system. This is because it will allow us to find an appropriate ansatz
to solve the equations from the extended HJB. We will see this in more detail in
the next section.

Notice that while the reader might reasonably expect û to be an equilibrium con-
trol law, we actually need the verification theorem to confirm it. First, however,
we will need to define a new function space. This is done below.

Definition 4.4. [54] Consider an arbitrary admissible control law u. We say
that a function h : R+ × Rn → R belongs to the space L2

T (Xu) if it satisfies the
condition:

Et,x
[∫ T

t

||hx(s,Xu
s )σu(s,Xu

s )||2 ds
]
<∞,

for every (t, x). In this expression, hx denotes the gradient of h in the x-variable
and σu is the diffusion part of the SDE governing the controlled process Xu

t .

We can now state the Verification theorem as follows:

Theorem 4.1 (Verification theorem). [55] Assume that (for all s and y) the func-
tions V (t, x), f sy(t, x), g(t, x) and û(t, x) have the following properties:

1. V, f sy and g solve the extended HJB system in Definition 4.3.

2. V (t, x) and g(t, x) are smooth in the sense that they are in C1,2, and f(t, x, s, y)
is in C1,2,1,2.
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3. The function û realises the supremum in the V-equation, and û is an admis-
sible control law.

4. V, f sy, g and G ◦ g as well as the function (t, x) → f(t, x, t, x) all belong to
the space L2

T (X û).

Then û is an equilibrium law, and V is the corresponding equilibrium value func-
tion. Furthermore, f and g can be interpreted according to equations (4.3) and
(4.4).

Therefore, given the regularity constraints given above, we know that if we were
to find a solution to the extended HJB system, then we have effectively found an
equilibrium control law for a time inconsistent problem with a functional J(t, x,u)
as defined previously.

While the extended HJB is undeniably helpful in finding the equilibrium control for
a time inconsistent problem such as the one we posed in section 3, it is important
to note the following points:

1. It is not always possible to solve the extended HJB system for any given
function F and G as given in our functional J(t, x,u).

2. The equilibrium control law that we get if we manage to solve the extended
HJB system need not be unique [46].

3. In the cases where it turns out that the equilibrium control is not unique,
the extended HJB does not tell us which equilibrium control is best for our
problem.

4. The Verification theorem tells us that if we manage to solve the extended
HJB, then we get an equilibrium control law û (that is given by the maximis-
ing of the V -equation) together with its the corresponding value function V .
Conversely, if there exists an equilibrium law û with its the corresponding
value function V , then we can only conjecture that V satisfies the extended
HJB system and that û is the supremum in the V -equation (given certain
regularity conditions) [56]. As of yet, this conjecture has not been proven.

5. Notice that if our functional is in standard form i.e. we have a time consistent
problem, then the extended HJB is simplified to the standard HJB equation.

So, we have seen that by solving the extended HJB system, we can find an equi-
librium control law for our time inconsistent problem. So, in the next section, we
will use this to derive some results on the form of the equilibrium control law.
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5 Applications of the extended HJB equation

Having presented the extended HJB system, we will now focus on how to use it
on our time-inconsistent problem which has the following form:

max
u∈U

Et,x[(T − t)X(T )− λ(t, x)X2(T )] + λ(t, x) (Et,x[X(T )])2 ,

given that:

dX(t) =

[
r + (µ− r)ut −

σ2u2t
2

]
dt+ [σut] dWt

= µ̃dt+ σ̃dWt,

where µ̃ :=

[
r + (µ− r)ut −

σ2u2t
2

]
and σ̃ := [σut] .

Note: Clearly, µ̃ and σ̃ are functions and not constants. However, as a matter of
convenience, we will write them without explicitly showing their dependence on ut
(also keep in mind that ut = u(t,Xt) for some function u). Moreover, as a matter
of notation, we will denote X(t) by Xu

t to show its dependence on the control.

It is clear from our problem above and the extended HJB that the functions F
and G are given by:

F (t, x,Xu
T ) = (T − t)Xu

T − λ(t, x)(Xu
T )2

=⇒ F (t, x, y) = (T − t)y − λ(t, x)y2.

Moreover,

G(t, x,Et,x[Xu
T ]) = λ(t, x) (Et,x[Xu

T ])2

=⇒ G(t, x, y) = λ(t, x)y2.

Notice that this means that our terminal condition becomes:

V (T, x) = F (T, x, x) +G(T, x, x) = (T − T )x− λ(t, x)x2 + λ(t, x)x2 = 0.

To solve the problem, we will first start by calculating each of the individual terms
inside supu∈U{.} in the extended HJB system. In the derivations that will follow,
we will use the following shorthand notations:

1. Vt := ∂V
∂t

(t, x), Vx := ∂V
∂x

(t, x), Vxx := ∂2V
∂x2

(t, x).

2. ft := ∂f
∂t

(t, x, t, x), fx := ∂f
∂x

(t, x, t, x), fs := ∂f
∂s

(t, x, t, x), fy := ∂f
∂y

(t, x, t, x),

fxx := ∂2f
∂x2

(t, x, t, x), fxy := ∂2f
∂y∂x

(t, x, t, x) and fyy := ∂2f
∂2y

(t, x, t, x).
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3. g := g(t, x), gt := ∂g
∂t

(t, x), gx := ∂g
∂x

(t, x), gxx := ∂2g
∂x2

(t, x)

4. Gt = ∂G
∂t

(t, x, g(t, x)), Gx = ∂G
∂x

(t, x, g(t, x)), Gy = ∂G
∂y

(t, x, g(t, x)), Gxx =
∂2G
∂x2

(t, x, g(t, x)), Gxy = ∂2G
∂x∂y

(t, x, g(t, x)) and Gyy = ∂2G
∂y2

(t, x, g(t, x)).

5. λ := λ(t, x), λt := ∂λ
∂t

(t, x), λx := ∂λ
∂x

(t, x) and λxx := ∂2λ
∂x2

(t, x).

Moreover, we will also denote by Auh the infinitesimal generator of a general
function h corresponding to the control u (remember that our definition of the
infinitesimal generator will include the term ∂h

∂t
).

So, we have:

(AuV )(t, x) = Vt + µ̃Vx +
σ̃2

2
Vxx.

Next we will calculate (Auf)(t, x, t, x). But first, we will calculate df(t, x, t, x)
using Itô’s lemma as follows:

df(t, x, t, x) = ftdt+ fxdX
u
t + fsdt+ fydX

u
t +

1

2

[
fxx(dX

u
t )2 + 2fxy(dX

u
t )2 + fyy(dX

u
t )2
]

=

[
ft + fs + µ̃(fx + fy) +

σ̃2

2
(fxx + 2fxy + fyy)

]
dt+ [σ̃(fx + fy)]dWt.

Therefore, we have:

(Auf)(t, x, t, x) = ft + fs + µ̃(fx + fy) +
σ̃2

2
(fxx + 2fxy + fyy).

The third term we have to calculate is (Auf tx)(t, x). Remember that the operator
will not act on the upper case index variables as they are viewed as fixed. Then,
it can easily calculated and is given by:

(Auf tx)(t, x) = ft + µ̃fx +
σ̃2

2
fxx.

Next, we will calculate Au(G ◦ g)(t, x) = AuG(t, x, g(t, x)). We will do so by first
calculating dG(t, x, g(t, x)) using Itô’s lemma. So,

dG(t, x, g(t, x)) =
1

2

[
Gxx(dX

u
t )2 + 2Gxy(dX

u
t )(dg(t,Xu

t )) +Gyy(dg(t,Xu
t ))2

]
+Gtdt

+GxdX
u
t +Gydg(t,Xu

t )
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= Gtdt+Gx[µ̃dt+ σ̃dWt] +Gy

{
gtdt+ gx[µ̃dt+ σ̃dWt] +

σ̃2

2
gxxdt

}
+
σ̃2

2

[
Gxx + 2Gxygx +Gyyg

2
x

]
dt.

Therefore,

Au(G◦g)(t, x) = Gt+ µ̃Gx+Gy

[
gt + µ̃gx +

σ̃2

2
gxx

]
+
σ̃2

2

[
Gxx + 2gxGxy + g2xGyy

]
.

We are now left to calculate (Hug)(t, x) which can be easily calculated and is given
by:

(Hug)(t, x) = Gy(t, x, g(t, x))×Aug(t, x) = Gy ×
[
gt + µ̃gx +

σ̃2

2
gxx

]
.

Therefore, the function J∗(t, x, u) inside supu∈U{.} in the extended HJB equation
can be simplified as follows:

J∗(t, x, u) = Vt + µ̃Vx +
σ̃2

2
Vxx − fs − µ̃fy −

σ̃2

2
(2fxy + fyy)−Gt − µ̃Gx

− σ̃2

2
[Gxx + 2gxGxy + g2xGyy].

Notice that only µ̃ and σ̃ depend on the control u. Therefore, the extended HJB
equation can be simplified as follows:

Vt−fs−Gt + sup
u∈U

{
[Vx − fy −Gx]µ̃+

σ̃2

2
[Vxx − 2fxy − fyy −Gxx − 2gxGxy − g2xGyy]

}
= 0.

Of course, the terminal condition is given by V (T, x) = 0.

Moreover, from our problem formulation, we know that the equilibrium value
function will be given by:

V (t, x) = f(t, x, t, x) + λ(t, x) [g(t, x)]2 .

This will therefore allow us to simplify the extended HJB system further and find
a system of PDEs which will help us in finding the equilibrium control – if indeed
it does exist. So, we will now find the partial derivatives of V (t, x) as follows:

Vt =ft + fs + [λ(t, x)][2ggt] + g2λt

=ft + fs + 2ggtλ+ g2λt.
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Similarly,

Vx =fx + fy + [λ(t, x)][2ggx] + g2λx

=fx + fy + 2ggxλ+ g2λx.

Finally,

Vxx =[fxx + fxy] + [fxy + fyy] + 2
{
λ[ggxx + g2x] + (ggx)λx

}
+ g2λxx + λx[2ggx]

=fxx + 2fxy + fyy + 2λ[ggxx + g2x] + g2λxx + 4λxgxg.

Lastly, to derive the results, note that G(t, x, y) = λ(t, x)y2. Therefore,

Gt = λty
2; Gx = λxy

2; Gy = 2λy; Gxx = λxxy
2; Gxy = 2λxy; Gyy = 2λ.

Therefore, from the extended HJB equation derived above and the fact that the
partial derivatives of the function G are evaluated at the point (t, x, g(t, x)), we
note the following:

1.

Vt − fs −Gt =ft + fs + 2ggtλ+ g2λt − fs − g2λt
=ft + 2ggtλ.

2.

Vx − fy −Gx =fx + fy + 2λggx + g2λx − fy − λxg2

=fx + 2λggx.

3.

Vxx − 2fxy − fyy −Gxx − 2gxGxy − g2xGyy =fxx + 2fxy + fyy + 2λ[ggxx + g2x]

+ 4λxgxg + g2λxx − 2fxy − fyy

− g2λxx − 4gxλxg − 2g2xλ

=fxx + 2λggxx.

Therefore, our extended HJB equation can be simplified to:

(ft + 2ggtλ) + sup
u∈U

{
µ̃[fx + 2λggx] +

σ̃2

2
[fxx + 2λggxx]

}
= 0,
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where the terminal condition is given by V (T, x) = 0.

Now, as a reminder µ̃ = r + (µ − r)u − σ2u2

2
and σ̃ = σu (for a fixed u ∈ U).

Moreover, let us define the following functions:

Φ(t, x, t, x) := fx + 2λggx and Ψ(t, x, t, x) := fxx + 2λggxx.

In the above, the partial derivatives of f are evaluated at (t, x, t, x) while those
of g are evaluated at (t, x). Also, for the calculations that follow, we will use the
following shorthand notation: Φ := Φ(t, x, t, x) and Ψ := Ψ(t, x, t, x).

So, our extended HJB becomes:

ft + 2ggtλ+ r(fx + 2λggx) + sup
u∈U

{
(µ− r)Φu− σ2

2
Φu2 +

σ2

2
Ψu2

}
= 0

=⇒ ft + rfx + 2λg[gt + rgx] + sup
u∈U

{
σ2

2
(Ψ− Φ)u2 + (µ− r)Φu

}
= 0.

(?)

Notice that the expression inside supu{.} above is a simple quadratic equation.
Also, since we are considering the supremum, we know that the problem will
only make sense and be economically feasible if the coefficient of u2 is negative.
Therefore, we require that:

Ψ− Φ < 0 ⇐⇒ fxx − fx + 2λg(gxx − gx) < 0.

The equilibrium control is then easily calculated, by first order condition, to be:

û(t, x) =
(µ− r)Φ
σ2(Φ−Ψ)

=
(µ− r)
σ2

[
fx + 2λgxg

fx − fxx + 2λg(gx − gxx)

]
.

Notice that this is well-defined since the denominator is non-zero as we have as-
sumed that [fx − fxx + 2λg(gx − gxx)] > 0. It should also be clear that we are
no closer to finding a useful equilibrium control because the control above is in
feedback form. Indeed, we will need to solve a set of partial differential equations
– if indeed they can be solved – to find the solution we are looking for. These
PDEs are found from the additional conditions in the extended HJB system.

So, we also have the following sets of equations:
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1.

Aûg(t, x) = 0.

=⇒ gt + gx

[
r + (µ− r)û− σ2

2
û2
]

+
σ2

2
gxxû

2 = 0

=⇒ gt + rgx + (µ− r)gxû+
σ2

2
(gxx − gx)û2 = 0. (1)

The terminal condition is given by g(t, x) = x.

2.

Aûf tx(t, x) = 0

=⇒ ft + fx

[
r + (µ− r)û− σ2

2
û2
]

+
σ2

2
fxxû

2 = 0

=⇒ ft + rfx + (µ− r)fxû+
σ2

2
(fxx − fx)û2 = 0. (2)

The terminal condition is given by f sy(T, x) = (T − s)x− λ(s, y)x2.

So, by plugging in the equilibrium control we found, the extended HJB equation
(?) is further simplified to:

ft + rfx + 2λg[gt + rgx] + (µ− r)Φû− σ2

2
(Φ−Ψ)û2 = 0.

And therefore,

ft + rfx + 2λg[gt + rgx] + (µ− r)[fx + 2λggx]û−
σ2

2
(fx + 2λggx − fxx − 2λggxx)û

2 = 0.

The above can be simplified to get:

ft + rfx + (µ− r)fxû+
σ2(fxx − fx)û2

2
+ 2λg

[
gt + rgx + (µ− r)gxû+

σ2(gxx − gx)û2

2

]
= 0.

Notice therefore that the extended HJB equation is equal to [2λg × (1)] + (2),
where (1) = (2) = 0. Therefore, we only need to solve equations (1) and (2) to
solve the whole system and find our equilibrium control law.
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To summarise, the equilibrium control law û(t, x) can be found explicitly as follows:

û(t, x) =
(µ− r)
σ2

[
fx + 2λgxg

fx − fxx + 2λg(gx − gxx)

]
,

where f(t, x, t, x) and g(t, x) are solved by the following equations:

ft + rfx + (µ− r)fxû+
σ2

2
(fxx − fx)û2 = 0,

gt + rgx + (µ− r)gxû+
σ2

2
(gxx − gx)û2 = 0,

with boundary conditions being:

f(T, x, s, y) = F (s, y, x) = (T − s)x− λ(s, y)x2 and g(T, x) = x.

Then, the equilibrium value function is given by:

V (t, x) = f(t, x, t, x) + λ(t, x)[g(t, x)]2.

Notice that in general we cannot always solve for the equilibrium control law from
the PDEs above. In fact, we do not even know whether the equilibrium control ac-
tually exists for the problem above. Worse still, even if an equilibrium control law
exists (together with its value function), we can only conjecture – not prove –
that it will solve the above extended HJB system given some regularity condition.
All that we know for certain is that if somehow we manage to find a solution to
the above extended HJB system, i.e. we can find the functions f, g and V such
that the above equations hold, then we have an equilibrium control law û(t, x)
which is given by the supremum of the V -equation in the extended HJB system.

Having derived a general result for our problem, we will now look at more concrete
applications by choosing a specific form for the risk aversion index.

5.1 Constant risk aversion index

One of the most obvious choices for the risk aversion index is a constant. Let us
denote this constant by η > 0. Notice that we will still choose a positive risk
aversion index to make it explicit that the investor is risk averse.

While it seems quite simplistic to choose λ(t, x) = η, we must realise that in real-
ity and over an investment period [0, T ], how risk-averse an investor is generally
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does not change. Indeed, people who do not like to take risks will most likely be
consciously choosing lower-yield investments because they are not very risky and
vice versa. Therefore, how risk-averse an investor is boils down to the investment
personality of the latter which does not change, if at all, much over time.

On a more mathematical note, it makes sense to choose λ(t, x) to be a constant
because our problem consists an optimisation problem involving the annualised
log-return of our investment. What this means is that, by taking log-returns, we
are already removing the dependence on our current wealth. This is because a re-
turn of $100 out of a starting capital of $1,000 corresponds to the same percentage
return – of 10% – as a return of $100,000 out of a starting capital of $1,000,000.
So, our initial wealth level does not matter. Moreover, by further annualising our
log-return, we should be indifferent about the length of the investment period [t, T ]
and thus of our starting point t. For example, a return of 20% over a period 2 years
is equivalent to a return of 10% over a 1 year period. Viewed from this perspective
then, by choosing to formulate our problem with the annualised log-return, we
should in theory be indifferent to what our wealth is and where we start from.
Thus, it is reasonable to assume that λ(t, x) = η.

So, our problem will be of the following form:

max
u∈U

Et,x[(T − t)X(T )− ηX2(T )] + η (Et,x[X(T )])2 ,

given that:

dX(t) =

[
r + (µ− r)ut −

σ2u2t
2

]
dt+ [σut] dWt

= µ̃dt+ σ̃dWt.

So, from the above formulation, it is clear that:

F (t, x,Xu
T ) = (T − t)Xu

T − η(Xu
T )2

=⇒ F (t, x, y) = (T − t)y − ηy2.

Moreover,

G(t, x,Et,x[Xu
T ]) = η (Et,x[Xu

T ])2

=⇒ G(t, x, y) = ηy2.

Notice that F does not depend on the variable x; while G depends only on the
variable y. Now, from the definition of the extended HJB system and our problem
formulation, the following holds:

f(t, x, s, y) = Et,x
[
F (s, y,X û

T )
]

= Et,x
[
F (s,X û

T )
]

= f(t, x, s).
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Therefore, fy(t, x, t, x) = fxy(t, x, t, x) = fyy(t, x, t, x) = 0.

Moreover, λt(t, x) = λx(t, x) = λxx(t, x) = 0. Also, Gt(t, x, y) = Gx(t, x, y) =
Gxy(t, x, y) = Gxx(t, x, y) = 0 and Gyy = 2η.

So, using the results we derived previously, our extended HJB equation becomes:

(Vt − fs) + sup
u∈U

{
Vxµ̃+

σ̃2

2
[Vxx − 2ηg2x]

}
= 0

=⇒ (Vt − fs + rVx) + sup
u∈U

{
(µ− r)Vxu−

σ2u2

2
Vx +

σ2u2

2
[Vxx − 2ηg2x]

}
= 0

=⇒ (Vt − fs + rVx) + sup
u∈U

{
[(µ− r)Vx]u+

σ2

2

[
Vxx − 2ηg2x − Vx

]
u2
}

= 0.

Notice that for the problem to be well-posed, we need Vxx < 2ηg2x + Vx. Assuming
that this holds true, then by first-oder conditions, the equilibrium control is given
by:

û(t, x) =
(µ− r)Vx

σ2 [2ηg2x + Vx − Vxx]
. (??)

To solve the above, problem, let us suppose that û(t, x) is a deterministic function
of time only i.e. û(t, x) = û(t). If that is true, then from section 3, we know that:

X û(T ) |X(t)=x ∼ N
(
x+

∫ T

t

r + (µ− r)û(s)− σ2û2(s)

2
ds,

∫ T

t

σ2û2(s)ds

)
Therefore, Et,x

[
X û(T )

]
is of the form Et,x

[
X û(T )

]
= g(t, x) = x + b(t), where

b : [0, T ]→ R is a deterministic function given by:

b(t) :=

∫ T

t

r + (µ− r)û(s)− σ2û2(s)

2
ds.

Moreover, Vart,x
[
X û(T )

]
= a(t), where a : [0, T ] → R is a deterministic function

given by:

a(t) :=

∫ T

t

σ2û2(s) ds.

Now, notice that:

V (t, x) = (T − t)Et,x
[
X û(T )

]
− ηVart,x

[
X û(T )

]
= (T − t)× [x+ b(t)]− ηa(t)

= (T − t)x+ [(T − t)b(t)− ηa(t)]

= (T − t)x+ c(t), where c(t) := (T − t)b(t)− ηa(t).
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Therefore, Vx(t, x) = (T − t), Vxx(t, x) = 0 and Vt(t, x) = −x + c′(t). Moreover,
gx(t, x) = 1, gxx(t, x) = 0 and gt(t, x) = b′(t).

Hence, we find from (??) that our equilibrium control is as follows:

û(t, x) =
(µ− r)(T − t)
σ2 [2η + (T − t)]

.

The above represents the proportion of our wealth that we should invest in the
risky asset at any point in time. Notice that our equilibrium control depends only
on t and not of our log-wealth x. This, of course, is not very realistic in practice.
However, notice that if instead of using an ansatz where û(t, x) is a deterministic
function of time only i.e. we use one which depends on (t, x), then our problem be-
comes significantly harder to solve. Indeed, finding the above equilibrium control
hinges on the fact that if û(t, x) is a deterministic function in time, then we know
the form of the functions V (., .) and g(., .). Without that assumption, it becomes
almost impossible to make a reasonable guess for V (., .) and g(., .).

While our initial reaction to the equilibrium control is that it is rather simplistic;
by conducting some analysis – as we will do shortly – we can, however, assure
ourselves that the control is indeed reasonable and makes economic sense.

Recall that X û(T ) = log[Y û(T )], where Y û(T ) is our wealth at time T where we
have used the equilibrium control. So,

Et,x
[
X û(T )

]
= Et,x

[
log
[
Y û(T )

]]
≤ log

[
Et,x

[
Y û(T )

]]
, by Jensen’s inequality.

Therefore,

Et,x
[
Y û(T )

]
≥ exp

{
Et,x

[
X û(T )

]}
= ex+b(t) = yeb(t),

where y = ex is our wealth at time t.

Now, b(t) is found as follows:

b(t) =

∫ T

t

r + (µ− r)û(s)− σ2û2(s)

2
ds

=

∫ T

t

r +
(µ− r)2(T − s)
σ2[2η + (T − s)]

− (µ− r)2(T − s)2

2σ2[2η + (T − s)]2
ds

= r(T − t) +
1

2

(
µ− r
σ

)2

(T − t)−
(
µ− r
σ

)2
η(T − t)

2η + T − t
.
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The last line follows by using standard integration techniques and partial fractions.

Therefore, we have:

Et,x
[
Y û(T )

]
≥ y exp

{
r(T − t) +

1

2

(
µ− r
σ

)2

(T − t)−
(
µ− r
σ

)2
η(T − t)

2η + T − t

}

> yer(T−t), for η > 0 and t < T .

The last line follows from the fact that the RHS of the inequality above is decreas-
ing in η, which can easily be proved using standard calculus.

Moreover, we can calculate Vart,x
[
X û(T )

]
= a(t) as follows:

a(t) =

∫ T

t

σ2û2(s)ds

=

(
µ− r
σ

)2 ∫ T

t

(T − s)2

[2η + (T − s)]2
ds

=

(
µ− r
σ

)2{
(T − t) + 4η log

(
2η

2η + T − t

)
+

2η(T − t)
2η + T − t

}
.

Now, since limη→∞ b(t) = r(T − t), we have that limη→∞ Et,x
[
X û(T )

]
= x+ r(T −

t). Moreover, limη→∞Vart,x
[
X û(T )

]
= limη→∞ a(t) = 0, using L’Hopital’s rule.

Therefore, we can conclude that X û(T )
p−→ x+ r(T − t) as η →∞. So, using the

Continuous Mapping Theorem [47], we have that:

Y û(T ) = eX
û(T ) p−→ ex+r(T−t) = yer(T−t).

What this says is that if we are become increasingly risk averse, the growth of our
wealth will converge towards the risk-free rate (in probability). This should also
be obvious from the fact that the equilibrium control tends to zero, almost surely,
as η → ∞, which means that we will not invest at all in the risky asset (except
on a set of measure zero). Moreover, Et,x

[
X û(T )

]
is decreasing in η. This just

says that to get a greater expected log-return, we need to be less risk-averse – we
need to take more risk. Thus, from the above, it is clear that the properties of our
equilibrium control does indeed make economic sense.

Moreover, we find that our equilibrium control, while quite simplistic, does in-
deed provide us with a terminal expected return greater than the risk-free rate.
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Therefore, the use of such a strategy can surely be justified.

Note: Notice that while we have derived a general result for the equilibrium con-
trol, it is much simpler in the above example to proceed using the unsimplified
version of the extended HJB equation. This is because in the above example, we
could find an appropriate ansatz for V and g which greatly simplifies the problem.
This, of course, is not always possible for other problems.

5.2 Modified Basak-Chabakauri problem

Let us now consider a different function for λ(t, x). The function we will use is
λ(t, x) = η(T − t), η > 0. Notice that our choice of λ(t, x), which as we discussed
before represents how risk averse we are, is decreasing in t. The reason for this
choice is that as we get closer and closer to the end of our investment period, we
might be more willing to invest in a risky asset as we do not expect the risky asset
to move drastically in such a short period of time. So, even if we face a downside
move in the risky asset, we would not expect it to be very substantial. Thus, we
might be tempted to take on more risk and to indicate this behaviour, our risk-
aversion must decrease as we move forward in time – hence explaining our choice
for λ(t, x).

At this point, notice that it is easier to simplify our objective problem rather than
to calculate all the derivatives as presented in the general case. Of course, this
trick does not work in all cases and therefore, the problem can be significantly
harder, or even unsolvable, for some other function λ(t, x).

So, choosing λ(t, x) = η(T − t), then our problem becomes:

max
u∈U

Et,x[(T − t)X(T )− η(T − t)X2(T )] + η(T − t) (Et,x[X(T )])2 .

This, of course, is mathematically equivalent to the following problem:

max
u∈U

Et,x[X(T )− ηX2(T )] + η (Et,x[X(T )])2 ,

with the dynamics of the controlled process being given by:

dX(t) =

[
r + (µ− r)ut −

σ2u2t
2

]
dt+ [σut] dWt

= µ̃dt+ σ̃dWt,

where µ̃ = r + (µ− r)ut − σ2u2t
2

and σ̃ = σut.
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Notice that with our choice of λ(t, x) = η(T − t), our problems closely resembles
the Basak-Chabakauri [48] problem. However, instead of maximising the expected
terminal wealth given a certain risk level; our problem reduces to maximising the
expected terminal log-wealth given a certain risk level. Moreover, in our problem,
the dynamics of the controlled process differs from the Basak-Chabakauri one.

Proceeding with our problem, we have F (t, x,Xu
T ) = Xu

T − η (Xu
T )2. Clearly, the

function only depends on the terminal value. Therefore, F (t, x,Xu
T ) = F (Xu

T ) =
Xu
T − ηXu

T . On the other hand, G(t, x,Et,x[Xu
T ]) = G(Et,x[Xu

T ]) = η(Et,x[Xu
T ])2.

Moreover, f sy(t, x) = Et,x[F (s, y,X û
T )] = Et,x[F (X û

T )] in our case. Therefore,
f sy(t, x) = f(t, x, s, y) = f(t, x). Therefore, in our extended HJB equationAuf tx(t, x)−
Auf(t, x) = 0. Thus, our extended HJB equation can be simplified to:

sup
u∈U
{(AuV )(t, x)−Au(G ◦ g)(t, x) + (Hug)(t, x)} = 0.

with the boundary condition being given by:

V (T, x) = F (T, x, x) +G(T, x, x) = F (x) +G(x) = x− ηx2 + ηx2 = x.

We will now calculate all the terms inside the extended HJB equation. First,

(AuV )(t, x) = Vt + µ̃Vx +
σ̃2

2
Vxx.

As for the second term of the extended HJB, we have:

d[G ◦ g(t, x)] = d[ηg2]

= η
{

2ggtdt+ 2ggx[µ̃dt+ σ̃dWt] + [ggxx + g2x]σ̃
2dt
}

=⇒ AuG ◦ g(t, x) = η ×
{

2ggt + 2µ̃ggx + σ̃2[ggxx + g2x]
}
.

For the third term, we can calculate it as follows:

Hug(t, x) = Gy(g(t, x))×Aug(t, x)

= 2ηg ×
{
gt + µ̃gx +

σ̃2

2
gxx

}
.
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Therefore, the extended HJB equation can be simplified to as:

sup
u∈U

{
Vt + µ̃Vx +

σ̃2

2
Vxx − ησ̃2g2x

}
= 0

=⇒ sup
u∈U

{
Vt + µ̃Vx +

σ̃2

2
[Vxx − 2ηg2x]

}
= 0

=⇒ sup
u∈U

{
Vt + Vx

[
r + (µ− r)u− σ2u2

2

]
+
σ2u2

2
[Vxx − 2ηg2x]

}
= 0

=⇒ Vt + rVx + sup
u∈U

{
(µ− r)Vxu+

σ2

2
[Vxx − Vx − 2ηg2x]u

2

}
= 0. (1)

From equation (1) above, we see that we have to find the maximum of a simple
quadratic function. So, for the above problem to make sense, we need Vxx − Vx −
2ηg2x < 0 ⇐⇒ Vxx < Vx + 2ηg2x.

The optimisation problem yields an equilibrium control in feedback form. We will
denote it by û(t), where again we assume the control is deterministic in t. So,

û(t) =
(µ− r)Vx

σ2[Vx + 2ηg2x − Vxx]
.

Plugging the above equilibrium control into our extended HJB equation, we get:

Vt + rVx +
(µ− r)2V 2

x

σ2[Vx + 2ηg2x − Vxx]
−
(
σ2(Vx + 2ηg2x − Vxx)× (µ− r)2V 2

x

2× σ4(Vx + 2ηg2x − Vxx)2

)
= 0

=⇒ Vt + rVx +
(µ− r)2V 2

x

σ2(Vx + 2ηg2x − Vxx)
− (µ− r)2V 2

x

2σ2(Vx + 2ηg2x − Vxx)
= 0

=⇒ Vt + rVx +
(µ− r)2V 2

x

2σ2(Vx + 2ηg2x − Vxx)
= 0.

Notice that V (T, x) = x. Therefore, we will use the ansatz V (t, x) = A(t)x+B(t),
with A(T ) = 1 and B(T ) = 0. So, Vt(t, x) = A′(t)x + B′(t); Vx(t, x) = A(t) and
Vxx(t, x) = 0. Moreover, we also know that g(T, x) = x. Therefore, we will use the
ansatz g(t, x) = a(t)x+ b(t), where a(T ) = 1 and b(T ) = 0.

Remark: The ansatz proposed above follows immediately from the fact that û(t)
is a deterministic function of time only – which is the approach we used in the pre-
vious example. The intention here, however, is to make the reader realise that in
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a general case, we do not necessarily know the form of either V or g, and therefore
have to resort to guesswork to further simplify the PDEs involved. In this case,
we guess the form of V or g based on their terminal value.

So, we can simplify our extended HJB equation as follows:

A′(t)x+B′(t) + rA(t) +
(µ− r)2A(t)

2σ2[A(t) + 2ηa2(t)]
= 0.

Notice that since the above holds for every x ∈ R, then the following equations
must hold:

A′(t) = 0.

B′(t) + rA(t) +
(µ− r)2A(t)

2σ2[A(t) + 2ηa2(t)]
= 0.

By simple calculus, A′(t) = 0 and A(T ) = 1 implies A(t) = 1.

The second equation therefore becomes:

B′(t) + r +
(µ− r)2

2σ2[1 + 2ηa2(t)]
= 0, (†)

and our equilibrium control can be further simplified to:

û(t) =
(µ− r)

σ2[1 + 2ηa2(t)]
.

We will now use the other conditions of the extended HJB system. So, first of all,

we have Aûg(t, x) = 0. Let us first denote µ̂ :=
[
r + (µ− r)û(t)− σ2û2(t)

2

]
and

σ̂ := [σû(t)].

Therefore,

Aûg(t, x) = 0

=⇒ gt + µ̂gx +
σ̂2

2
gxx = 0

=⇒ a′(t)x+ b′(t) + a(t)

[
r +

(µ− r)2

σ2[1 + 2ηa2(t)]
− σ2(µ− r)2

2σ4[1 + 2ηa2(t)]2

]
= 0

=⇒ a′(t)x+ b′(t) + a(t)

[
r +

(µ− r)2

σ2[1 + 2ηa2(t)]
− (µ− r)2

2σ2[1 + 2ηa2(t)]2

]
= 0.
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Again, the above holds for every x ∈ R≥0. So, the following equations must hold:

a′(t) = 0.

b′(t) + a(t)

[
r +

(µ− r)2

σ2[1 + 2ηa2(t)]
− (µ− r)2

2σ2[1 + 2ηa2(t)]2

]
= 0. (‡)

We know that a(T ) = 1, and this together with the ODE a′(t) = 0 implies that
a(t) = 1.

Now, we can simplify the equation (†) as follows:

B′(t) + r +
(µ− r)2

2σ2[1 + 2ηa2(t)]
= 0

=⇒ B′(t) + r +
(µ− r)2

2σ2(1 + 2η)
= 0

=⇒ B(t)−B(T ) = −
[
r +

(µ− r)2

2σ2(1 + 2η)

]
(t− T )

=⇒ B(t) =

[
r +

(µ− r)2

2σ2(1 + 2η)

]
(T − t), as B(T ) = 0.

Moreover, from (‡) and terminal condition b(T ) = 0, we have:

b′(t) + a(t)

[
r +

(µ− r)2

σ2[1 + 2ηa2(t)]
− (µ− r)2

2σ2[1 + 2ηa2(t)]2

]
= 0

=⇒ b′(t) +

[
r +

(µ− r)2

σ2(1 + 2η)
− (µ− r)2

2σ2(1 + 2η)2

]
= 0.

Therefore,

b(t) =

[
r +

(µ− r)2

σ2(1 + 2η)
− (µ− r)2

2σ2(1 + 2η)2

]
(T − t).

Finally, combining the results we have obtained above, we get:

V (t, x) = x+

[
r +

(µ− r)2

2σ2(1 + 2η)

]
(T − t).

g(t, x) = x+

[
r +

(µ− r)2

σ2(1 + 2η)
− (µ− r)2

2σ2(1 + 2η)2

]
(T − t).

û(t) =
(µ− r)
σ2[1 + 2η]

.
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This time our equilibrium control is a positive constant. So, we will hold a constant
proportion of our wealth in the risky asset. Moreover, this is a long-only portfolio.
Again, we find that our control is simplistic; however, preliminary analysis shows
that it does indeed make sense. For example, our equilibrium control decreases
as we increases η – meaning that we will hold less of the risky asset if we become
more risk averse.

Furthermore, notice that g(t, x) = Et,x[X û
T ] = x+

[
r + (µ−r)2

σ2(1+2η)
− (µ−r)2

2σ2(1+2η)2

]
(T−t)

is a decreasing function of η. So, g(t, x) > x+ r(T − t). Had we only invested into
the risk-free asset, then our expected log-wealth would have been only x+r(T −t).
Hence, because our expected terminal log-wealth is greater than what it would
have been had we invested only into the risk-free asset, it makes sense to use the
equilibrium control. Of course, this argument holds because we know that the
equilibrium control has taken into account our risk preferences.

Remark: Notice that by using a more “complicated” risk-aversion index (i.e.
λ(t, x) = η(T − t) instead of λ(t, x) = η), we get a much simpler equilibrium
control. In fact, one can argue that in the case where λ(t, x) = η, the equilibrium
control we get is more meaningful – given its dependence on time – than the one
above where we simply hold a constant proportion of wealth in stocks.

6 Equivalent time consistent formulation

One interesting property of a time-inconsistent problem in the present framework
presented is that there always exists an equivalent time consistent problem [49].
While this does not have many practical applications, we will still provide the
equivalent time-consistent formulations to our examples above for the sake of com-
pleteness.

Remember that the normal HJB equation is of the form:

sup
u∈U

{
Vt + µ̃Vx +

σ̃2

2
Vxx + C(t, x, u)

}
= 0, V (T, x) = F (x),

which is used to solve a problem of the form:

V (t, x) := max
u∈U

Et,x
[∫ T

t

C(s,Xs, us)ds+ F (Xu
T )

]
.

Moreover, the controlled process is governed by the SDE:

dXu
t = µ(t,Xu

t , ut)dt+ σ(t,Xu
t , ut)dWt, Xt = x.
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In the above, we have used the following notation: µ̃ := µ(t,Xu
t , ut) and σ̃ :=

σ(t,Xu
t , ut). In our case, µ̃ =

[
r + (µ− r)ut − σ2u2t

2

]
and σ̃ = [σut].

Notice that in the case where λ(t, x) = η, our extended HJB equation is given by:

sup
u∈U

{
Vt + Vxµ̃+

σ̃2

2
Vxx − σ̃2ηg2x − fs

}
= 0, V (T, x) = 0.

Since−σ̃2ηg2x(t, x)−fs(t, x, t) = −σ2ηu2tg
2
x(t, x)−fs(t, x, t) depends only on (t, x, u),

then it is clear that if we define C(t, x, u) := −σ2ηu2tg
2
x(t, x)−fs(t, x, t) = −σ2ηu2t−

fs(t, x, t) = −σ2ηu2t−x−b(t) and F (Xu
T ) = 0, we get the equivalent time-consistent

problem.

Remark: We have used the same notations and solutions as presented when solv-
ing our problem when λ(t, x) = η. So, refer to section 5.1 for the definitions of
b(t) and gx.

So, the time-consistent problem when λ(t, x) = η is given by:

V (t, x) := max
u∈U

Et,x
[
−
∫ T

t

σ2ηu2s +Xu
s + b(s)ds

]
, V (T, x) = 0.

Moreover, the controlled process is governed by the SDE given by:

dXu
t =

[
r + (µ− r)ut −

σ2u2t
2

]
dt+ [σut] dWt, Xt = x.

Similarly, for the case where λ(t, x) = η(T − t), the extended HJB is given by:

sup
u∈U

{
Vt + µ̃Vx +

σ̃2

2
Vxx − ησ̃2g2x

}
= 0, V (T, x) = x.

Since −ησ̃2g2x = −ησ2u2tg
2
x(t, x) depends only on (t, x, u), then it is clear that if we

define C(t, x, u) := −ησ2u2tg
2
x(t, x) = −ησ2u2t , we get the equivalent problem.

Therefore, we can define the equivalent time-consistent problem as:

max
u∈U

Et,x
[
Xu
T −

∫ T

t

ησ2u2s ds

]
.
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given that dXu
t =

[
r + (µ− r)ut − σ2u2t

2

]
dt+ [σut] dWt, Xt = x.

Remark: Notice that we first need to solve the extended HJB system fully to be
able to formulate its equivalent time consistent problem.

7 Conclusion

The Markowitz formulation of finding the optimal weights which maximise the
final expected return of a portfolio given a pre-determined level of risk is without
doubt a brilliant idea. However, it is also fraught with several weaknesses. To be-
gin with, the problem is static. This means that once we find the optimal weights
at time t = 0 to build our portfolio, we can no longer adjust the weights again
in the future. This is clearly a very big weakness since in practice, investment
managers consistently adjust the weights of the securities in their portfolios.

So, to remediate this issue, we have formulated our problem in a continuous and
dynamic setting whereby at every point in time, we will be allowed to rebalance
our portfolio. Once we move to the continuous time setting, however, it becomes
crucial to change our definition of returns as used in the MPT – which is why
we have used log-returns. Additionally, we will annualise those returns to enable
comparison over different investment periods. Our objective, then, much like in
the standard Markowitz formulation will be to maximise the final expected annu-
alised return of our portfolio given a certain risk level at every point in time.

This approach, however, has a drawback in the sense that it is a time-inconsistent
problem. What this means is that if we were at time t with log-wealth x and found
the optimal weights to hold at every subsequent time and wealth, then as we move
along, we will actually find that those weights will actually no longer be optimal.
Clearly then, the standard concept of optimality becomes very problematic.

This is why we have used a different approach and introduced the concept of equi-
librium control. Broadly speaking, this means that we view our problem as a series
of games being played at every point in time, and where the player at time t can
choose the weights of the risky asset that he can hold. The key then to solve the
problem is, loosely speaking, to find the best control now given that the players
after us will choose a control to maximise their own objective function.

We have seen that by using this approach, we can indeed get a sensible equilib-
rium control. However, it is also obvious that because our equilibrium control is a
function of time only, it is too simplistic. Of course, we would have preferred our

43



equilibrium control to depend on our wealth also, but as we have discussed, such
a control – although it might exist – is incredibly hard to find.

On the bright side, however, the equilibrium control law we found in our example
gives us an expected final return greater than the risk free rate. This, combined
with the fact that the equilibrium control has taken into consideration our chang-
ing risk preferences in the future, enables us to conclude that it does make sense
to use them when managing our portfolio. Moreover, we have also seen that the
equilibrium control laws we derived make economic sense – they behave in a way
that we would expect them to based on economic theory.

One final point to bear in mind is that an equilibrium control law may not be
unique. Indeed, there may be other functions which satisfy the extended HJB
system but which will not yield the same equilibrium control. So, uniqueness of
the control is certainly an issue. With non-uniqueness of an equilibrium control,
we obviously would want to know which equilibrium control is best and makes the
most economic sense. However, this turns out to be an incredibly complex problem
for which no meaningful results have been provided so far. Unfortunately, the same
is also true when it comes to proving that a solution to the extended HJB system
actually exists.
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